Search results for "physiology [Action Potentials]"
showing 10 items of 95 documents
Effects of ocean acidification on embryonic respiration and development of a temperate wrasse living along a natural CO2gradient
2016
We assessed rising CO2 effects on metabolism and development of a nesting wrasse by reciprocal transplant experiments in the field. Offspring brooded under different CO2 conditions exhibited similar responses. However, embryos from High-CO2 site were resilient to a wider range of pCO2 levels than those belonging to current-day conditions.
Angiotensin II type 1 receptor antagonists in animal models of vascular, cardiac, metabolic and renal disease
2016
AbstractWe have reviewed the effects of angiotensin II type 1 receptor antagonists (ARBs) in various animal models of hypertension, atherosclerosis, cardiac function, hypertrophy and fibrosis, glucose and lipid metabolism, and renal function and morphology. Those of azilsartan and telmisartan have been included comprehensively whereas those of other ARBs have been included systematically but without intention of completeness. ARBs as a class lower blood pressure in established hypertension and prevent hypertension development in all applicable animal models except those with a markedly suppressed renin–angiotensin system; blood pressure lowering even persists for a considerable time after d…
Targeting Voltage-Dependent Calcium Channels with Pregabalin Exerts a Direct Neuroprotective Effect in an Animal Model of Multiple Sclerosis
2018
Background/aims Multiple sclerosis (MS) is a prototypical autoimmune central nervous system (CNS) disease. Particularly progressive forms of MS (PMS) show significant neuroaxonal damage as consequence of demyelination and neuronal hyperexcitation. Immuno-modulatory treatment strategies are beneficial in relapsing MS (RMS), but mostly fail in PMS. Pregabalin (Lyrica®) is prescribed to MS patients to treat neuropathic pain. Mechanistically, it targets voltage-dependent Ca2+ channels and reduces harmful neuronal hyperexcitation in mouse epilepsy models. Studies suggest that GABA analogues like pregabalin exert neuroprotective effects in animal models of ischemia and trauma. Methods We tested t…
26th Annual Computational Neuroscience Meeting (CNS*2017): Part 2
2017
International audience; No abstract available
Very low doses of muscimol and baclofen ameliorate cognitive deficits and regulate protein expression in the brain of a rat model of streptozocin-ind…
2018
Recent studies devoted to neuroprotection have focused on the role of the gamma-aminobutyric acid (GABA) system in regulating neuroinflammatory processes which play a key role in the neurodegenerative processes observed in Alzheimer's disease (AD) by inducing glial cell overactivation and impairing neurotransmission. Data on the efficacy of classical GABA-A and GABA-B receptor agonists (muscimol and baclofen, respectively) in animal models of AD are not available. Moreover, no published studies have examined the ability of optimal doses of these compounds to prevent neuroinflammation, the alterations in neurotransmission and cognitive deficits. In the present study, we used a non-transgenic…
Intranasal Administration of Extracellular Vesicles Derived from Human Teeth Stem Cells Improves Motor Symptoms and Normalizes Tyrosine Hydroxylase E…
2018
Abstract Parkinson's disease (PD) is the second most common neurodegenerative disorder affecting millions of people worldwide. At present, there is no effective cure for PD; treatments are symptomatic and do not halt progression of neurodegeneration. Extracellular vesicles (EVs) can cross the blood–brain barrier and represent promising alternative to the classical treatment strategies. In the present study, we examined therapeutic effects of intranasal administration of EVs derived from human exfoliated deciduous teeth stem cells (SHEDs) on unilateral 6-hydroxydopamine (6-OHDA) medial forebrain bundle (MFB) rat model of PD. CatWalk gait tests revealed that EVs effectively suppressed 6-OHDA-…
Linoleic acid: Is this the key that unlocks the quantum brain? Insights linking broken symmetries in molecular biology, mood disorders and personalis…
2017
Abstract In this paper we present a mechanistic model that integrates subneuronal structures, namely ion channels, membrane fatty acids, lipid rafts, G proteins and the cytoskeleton in a dynamic system that is finely tuned in a healthy brain. We also argue that subtle changes in the composition of the membrane’s fatty acids may lead to down-stream effects causing dysregulation of the membrane, cytoskeleton and their interface. Such exquisite sensitivity to minor changes is known to occur in physical systems undergoing phase transitions, the simplest and most studied of them is the so-called Ising model, which exhibits a phase transition at a finite temperature between an ordered and disorde…
Alterations of perineuronal nets in the dorsolateral prefrontal cortex of neuropsychiatric patients
2019
Abstract Background Alterations in the structure and physiology of interneurons in the prefrontal cortex (PFC) are important factors in the etiopathology of different psychiatric disorders. Among the interneuronal subpopulations, parvalbumin (PV) expressing cells appear to be specially affected. Interestingly, during development and adulthood the connectivity of these interneurons is regulated by the presence of perineuronal nets (PNNs), specialized regions of the extracellular matrix, which are frequently surrounding PV expressing neurons. Previous reports have found anomalies in the density of PNNs in the PFC of schizophrenic patients. However, although some studies have described alterat…
Reconstitution of Myelomonocyte-Depleted Mice With Monocytes, But Not With Neutrophils, Reestablishes Arterial Hypertension and Oxidative Stress in R…
2011
Synaptic scaling generically stabilizes circuit connectivity
2011
Neural systems regulate synaptic plasticity avoiding overly strong growth or shrinkage of the connections, thereby keeping the circuit architecture operational. Accordingly, several experimental studies have shown that synaptic weights increase only in direct relation to their current value, resulting in reduced growth for stronger synapses [1]. It is, however, difficult to extract from these studies unequivocal evidence about the underlying biophysical mechanisms that control weight growth. The theoretical neurosciences have addressed this problem by exploring mechanisms for synaptic weight change that contain limiting factors to regulate growth [2]. The effectiveness of these mechanisms i…